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Inhibition of chaos in Hamiltonian systems by periodic pulses
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It is shown that, depending on their amplitude, period, shape, and initial phase, a time-dependent
periodic string of external driving pulses can suppress classical deterministic stochasticity. The analysis
is based on a coupled pendulum-harmonic-oscillator system. Similar results are obtained by studying
the behavior of the Lyapunov exponent from a simple recursion relation which models an unstable limit

cycle affected by a periodic string of pulses.
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The dynamics of chaotic Hamiltonian systems, in both
their classical and quantum versions, has attracted great
interest in recent years [1,2]. Much work has been devot-
ed to the study of kicked oscillators, where, in the
overwhelming majority of cases, the periodic 8 function
has been used to model the periodic kicks [3]. Numerical
(and analytical) results are easily obtained in these cases,
and, in the quantum context, the results are believed to
be qualitatively generic [4]. However, for classical dissi-
pative systems it has recently been found that the dynam-
ics of a generic periodically pulsed nonlinear oscillator is
very sensitive to changes in the geometrical shape of the
periodic pulses [5]: the system displays different types of
bifurcations (homoclinic, Hopf) under suitable conditions
when only the pulse shape is varied.

Another general setting, the possibility of controlling
chaotic systems, has also inspired much recent theoreti-
cal and experimental work [6-14], due both to its intrin-
sic interest and to the many possible technological appli-
cations. Thus, Ott, Grebogi, and Yorke showed in Ref.
[7] that one can change the motion of a chaotic dynami-
cal system into periodic motion by controlling the system
to stay near one of the many unstable periodic orbits em-
bedded in the chaotic attractor by means of only weak
time-dependent perturbations to an accessible system pa-
rameter. Also, Braiman and Goldhirst demonstrated in
Ref. [12] the possibility of eliminating chaos by applying
weak harmonic forcing via the example of a driven
damped pendulum. However, little is known yet about
the possible role of the shape of the weak, time-dependent
perturbation causing this suppression of the chaotic dy-
namics.

Here it is proposed to study the inhibitory effect of a
periodic sequence of pulses of equal amplitude on the
chaotic behavior of a Hamiltonian system. The analysis
will follow two lines.

First, I consider the well-known simple coupled oscilla-
tor model describing a plane pendulum coupled to a har-
monic oscillator [15]. This Hamiltonian system admits
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chaotic behavior, and by virtue of having homoclinic or-
bits is amenable to the Melnikov method of analysis
[15-17]. As has been well established, if the Melnikov
function has simple zeros, then the stable and the unsta-
ble manifolds intersect transversely for weak perturba-
tions, yielding homoclinic points. The resulting motion is
so irregular that one can describe it as chaotic. I will
show that, if an additional periodic string of pulses is ap-
plied, then, depending on their shape, period, initial
phase, and amplitude, the Melnikov function can be
prevented from admitting simple zeros, which implies
that such periodic pulses inhibit the deterministic sto-
chasticity.

Second, I analyze the behavior of the Lyapunov ex-
ponent (LE) from a simple recursion relation that models
an unstable limit cycle affected by a periodic pulsatile
perturbation. The results of this analysis are in qualita-
tive agreement with those of the pulsed coupled
pendulum—harmonic oscillator, so that the main con-
clusions seem to be generic.

Let us consider the following Hamiltonian for the cou-
pled oscillator model [15,16]:

H(q,p,X,v):F(q,p)+G(x,v)+sH“’(q,p,x,v) ;o (1)

where

[

F(g,p)=1p*+(1—cosq) ,

G (x,v)=1(v +w’x?) ,

[9%)

and

HWg,p,x,v)="(x —q)*, (4)

S

denote the plane pendulum, the harmonic oscillator, and
the coupling perturbation, respectively, and K, €, and o,
are the coupling and perturbation parameters, and the
angular frequency of the harmonic oscillator, respective-
ly. The Hamiltonian perturbation H (1) destroys the in-
tegrability by introducing Smale horseshoes into the dy-
namics and hence the possibility of chaos. Following
Guckenheimer and Holmes [cf. Eq. (4.8.48) of Ref. [15]],
the Melnikov function for the perturbed Hamiltonian H,
Eq. (1) is
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In calculating Eq. (5), the total energy of the homoclinic
orbit had been taken as 2 and H(q,p,x,v)=h. Since
M (t,) has simple zeros and is independent of €, it may be
concluded that, for 0 <€ << 1, one can have transverse in-
tersection (and Smale horseshoes in the Poincaré map)
when h > 2.

Let us now look at the effect of a time-dependent
periodic string of external solitonlike pulses represented
by( 1t)he perturbation H®, of the same order [O(e)] as
H'":

H?= Aq(1—V1—m )" '[dn(2Kt /T +@;m)
—Vi-m]. (6)

Here dn is the Jacobian elliptic function (JEF) of parame-
ter m, K is the elliptic integral of the first kind, and 4, T,
and @ (0<@=<2k) are the amplitude, and initial phase,
respectively, of the pulses. The dn function modeling the
periodic pulses is not an arbitrary choice but, quite to the
contrary, is physically meaningful since the JEF’s form
the periodic solutions of the most-studied, nonlinear, in-
tegrable oscillators such as the Duffing, the pendulum, or
the Helmholtz [2] oscillators.

Besides invariance under  spatial reflection,
x——x, g——gq, p—p, V—V, t—t, the undriven sys-
tem (H'V#0, H'?=0) possesses the time reversal sym-
metry x —x, g—q, p—>—p, v—>—v, t——t. For a
general periodic driving, this twofold symmetry is des-
troyed and substituted by the discrete time-translation
invariance under t—t+7. In the particular case
of a harmonic driving [H®’= Agcos(wt)], the symmetry
flt+(T/2)]=—f(2), restores a similar situation as in
the undriven case: The system is now invariant under the
generalized parity transformation P, x ——x, ¢ — —gq,
p—p, V—v, t—t+(T/2) [18]. Observe that this can
no longer be stated for the driving in (6) due to the nature
of the dn function. [This is relevant on the quantum-
mechanical level, where the generalized parity enables us
to classify the Floquet functions into states of even and
odd parity, respectively.]

Now the energy function

H=F(g,p)+G(x,v)+e[HV+H?] o

is no longer conserved and one has to consider [17] an
equation for the time development of H in addition to the
Hamiltonian equations of motion

£+58H“’ oF

"o o T8 “ag

(8)
. aH(l)_ _ aH(l)
0w+€aI,I—-Eae,

where
[=A0—V1—m ) [dn(2Kt /T+@g;m)—V1—m ],
©)

and (I,0) are the wusual action angle variables
defined by the canonical change of coordinates
x =21 /»)""*sin0,v =w(2I /w)!"*cosf. Observe that, for
fixed 4, T, and @, one can vary the shape of the pulses
by changing the elliptic parameter m between O and 1.
The special form of f is introduced for eliminating the
steady push inherent in the dn function. Figure 1 shows
three plots of the driving pulses (9) for different m values.
If m =0, then f = A cos®(wt /T), i.e., we recover the cor-
responding case of harmonic forcing. With increasing m,
the width of the force becomes lower and lower (see Fig.
1), and for m ~1 one has periodic sharply kicking forcing
very close to the periodic 8 function, but with finite
width and amplitude as in real observed pulses (see,
e.g., Ref. [19]). In the other limit we have
dn[2Kt/T;m—1]=0, i.e., the pulse area tends to O if
m —1, for A,T=const. Following Holmes and Marsden
[16,20], by applying to (7) the classical reduction scheme
[17] along with an average A instead of A, the Melnikov
function obtained is

Mf(t0)=(l/w2)lM(to)—‘f_ww

dt] , (10)
r—to

where M(t,) is given by (5) with the substitution for s by
some average h appropriate for the time-dependent H
[Eq. (7)]. (Note that, although there are several averaging
procedures [17], there is no need to give 4 explicitly for
our purposes.) Now, making use of OF/dp=p, the
Fourier expansion for dn [21], and the homoclinic orbit
associated with the F system

g (t)=2arctan(sinh(¢)) ,

(1
p(t)=2sech(t) ,
for the integral in (10)
I dt= AP(to,@;T,m) , (12)
e —1
with
17 1
I fil i
| i |
7 3 )
F ‘\ K fll |
= A !
o I :
0 1Lf a A
0 T Al
FIG. 1. Pulse function f, [Eq. (9)], for A =const,

T=const, =0, and m =0.5 (dotted line), m =0.999 (dashed
line), and m =1—10""* (solid line).
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P(to,qJ;T,m):l—ll‘/_'——
- —m
2 n=ow ’ 2
T nmK niw
X X ,.=2—wse(:h ech T
2n1rt
X cos 0 +m
K
—27V1i—m | . (13)

It is straightforward to demonstrate that
P(ty,@;T,m), regarded as a function of ¢, only, has max-
ima at t,=[n—(@/2K)]T, n=0,1,..., and minima at

to=|n+1i—-L =0,1,... .
0= |n i |T. n=01,
Hence,
P T,m) > P(ty,@;T,m) =P, (T,m)>0.  (14)
with
1 mr T nwK'’
YM) = ———— | — h | ———
Poax(T,m) PRV b {K nzz_wsec X ]
2
nw
Xsech | ——
sec T
—27V'1—m l s (15a)
1 m T !
Pl T,m)= ——eer | e
min(T,m) 1—V1—-m [K nzz_wsech
2
Xsech |—— [(—1)"
—2mV'1l—m } , (15b)
")
Popgn(T,m =0)=1 | 1+sech | 7 | | , (15¢)
2
P in(T,m=0)=m|1—sech |— , (15d)
P, (T,m=1=P,_ (T,m=1)=0. (15€)

A typical plot of P, (m), P.;.(m), with T const, is
shown in Fig. 2. Therefore, one can recast Eq. (10) in the
form

M(t5)=(1/0"){R (h,0)sin(wty)— AP(t;,@; T,m))
(16)
where

TW

_27V2AR—2)
= ———"8€
10 2

R(h,®) ch a7n

FIG. 2. Threshold functions P,,,(m) (solid line) and P ;,(m)
(dashed line) versus m [Egs. (15a) and (15b), respectively] in a
generic situation, the remaining parameters being held constant.

Now, with Ty =2m/w being the harmonic oscillator
period, the following lemma gives the conditions under
which the suppression of classical deterministic stochasti-
city is possible.

Lemma. Let [4m+2(1—@/K)]T=(4n+1)Ty for
some positive integers m and n. Then M,(¢,) always has
the same sign, specifically, M,(¢,) <0, if and only if

R(k,0)< AP, (T,m) . (18)

Proof. One has from Eq. (14)

a)sz(to)Z[R(}T,w)sin(wto)— AP(ty,;T,m)]
< [R(h—,w)sln(a)to)_ APmin(T,m)] )

and therefore condition (18) implies that M,(¢,) <0. The
converse follows from the existence of a value of ¢, such
that

sinlfwty)=1; Plty,@;T,m)=P_; (T,m) .

This is a consequence of the ‘““selective” resonance con-
dition of the lemma.

Remarks. First, observe that a requirement is ¢ =1IK, I
integer (I <2m +1), for the above resonant condition to
be fulfilled for some positive integers m and n. It is worth
mentioning that while such a resonant constraint is not
required for suppressing Hamiltonian chaos, it needs to
be imposed for Eq. (18) also to represent a necessary con-
dition for the inhibition of Hamiltonian stochasticity.
Second, for fixed % and o, if the pulses are very narrow
(m =1) it is clear from Eq. (15¢) and Fig. 2 that condition
(18) is not readily fulfilled since e 4 <<1. In other words,
with the same period and amplitude, wide pulses can
suppress chaos more easily than sharp ones.

It must be stressed that adding a pulsatile external field
has distinct effects on different orbits. However, as the
relevance of the coexistence of infinitely many periodic
unstable orbits is today well accepted, and the situation is
considered equivalent to steady chaos, one may compare
the above results with those from the model of an unsta-
ble limit cycle affected by a small periodic pulse perturba-
tion:
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Xn+l=(.u'+8fn)Xn ’ (19

with p>1, fo=01=V1—m) [dn(2Kn/T;m)
—V'1—m ]. A similar recursion relation with f, a har-
monic function_was studied in Ref. [12]. Note that
(f)=0—=—V1—m) ' [w/2K—V1—m] angular
brackets denoting an average over n. When £=0, the
fixed point x is unstable. To study the effect of the weak
pulsatile perturbation, let us calculate the LE for £70:

A=Re({In(p+ef,)) . (20)

If the Ilimit cycle is weakly unstable then
pu=1+18], |8| <<1. In this situation, for small &, Eq.
(20) becomes A= |8| —eP’(m)+0(8%€?), with

L Vi—-m

2K . 21

A plot of P'(m) is shown in Fig. 3 (note the great simi-
larity with the curves of Fig. 2). When |8] <eP’(m), the
LE A is negative, i.e.,, x is stable. On the contrary, if
|8] > eP’(m), A is positive and x is unstable. In order to
clarify the pure effect of pulse shape on the reduction of
instabilities (positive LE), consider that we have an initial
state characterized by e=¢*,m=m*~1 such as
|8 >e*P'(m*). Then, by decreasing m, one decreases
the LE A which, in some cases, may become negative,
thus stabilizing x.

In summary, I have shown by way of a coupled
pendulum-harmonic-oscillator example that, depending
on their amplitude, period, initial phase, and geometrical
shape, a time-dependent periodic string of external driv-
ing pulses can reduce and suppress deterministic stochas-
ticity. That the period and initial phase of the pulses
satisfy a condition of selective resonance with the period
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FIG. 3. Function P'(m) versus m [Eq. (21)].

of the harmonic oscillator has allowed us to form a
sufficient and necessary condition for the dynamics to be-
come regular. The condition was only sufficient without
this selective resonance. It was also demonstrated that
the inhibitory effect of the pulsatile external field is very
sensitive to changes in the geometrical form of the pulses:
wide pulses suppress stochasticity more readily than nar-
row ones. Finally, similar results were found using a sim-
ple model recursion relation, leading one to conjecture
their generic nature.

This study, which is intended solely as an analytical
survey, should encourage someone to investigate the
problem in a numerical form. A related topic which
deserves further investigation is the stability of subhar-
monic orbits.

Stimulating and helpful discussions with Professor J.
Diaz Bejarano are gratefully acknowledged.
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